题目内容
已知n∈N*,
(1)证明:对任意k∈N*,有kC
=nC
;
(2)证明:1•C
+2•C
+…+n•C
=n•2n-1;
(3)化简:C
-
C
+
C
-
C
+…+
C
.
(1)证明:对任意k∈N*,有kC
k n |
k-1 n-1 |
(2)证明:1•C
1 n |
2 n |
n n |
(3)化简:C
0 n |
| 1 |
| 2 |
1 n |
| 1 |
| 3 |
2 n |
| 1 |
| 4 |
3 n |
| (-1)n |
| n+1 |
n n |
考点:组合及组合数公式
专题:排列组合
分析:(1)由组合数公式可得左边=
,右边=
,可证得结论;(2)设0
+1•C
+2•C
+…+n•C
=x,①由组合数的性质可得n
+(n-1)•C
+(n-2)•C
+…+0•C
=x,两式相加即可证明;(3)由(1)对任意k∈N*,有kC
=nC
,变形可得
C
=
C
,可得原式=
-
+
-
+…+
(-1)n
=
(
-
+
-
+…+(-1)n
),由(1-1)n+1的二项展开式可得.
| n! |
| (k-1)!•(n-k)! |
| n! |
| (k-1)!•(n-k)! |
| C | 0 n |
1 n |
2 n |
n n |
| C | 0 n |
1 n |
2 n |
n n |
k n |
k-1 n-1 |
| 1 |
| k |
k-1 n-1 |
| 1 |
| n |
k n |
| 1 |
| n |
| C | 1 n+1 |
| 1 |
| n |
| C | 2 n+1 |
| 1 |
| n |
| C | 3 n+1 |
| 1 |
| n |
| C | 4 n+1 |
| 1 |
| n |
| C | n+1 n+1 |
| 1 |
| n |
| C | 1 n+1 |
| C | 2 n+1 |
| C | 3 n+1 |
| C | 4 n+1 |
| C | n+1 n+1 |
解答:
证明:(1)左边=kC
=k•
=
,
右边=n•
=
,
∴对任意k∈N*,有kC
=nC
;
(2)设0
+1•C
+2•C
+…+n•C
=x,①
则n•C
+(n-1)•
+…+1•C
+0
=x,
由组合数的性质可得n
+(n-1)•C
+(n-2)•C
+…+0•C
=x,③
①③两式相加可得n(
+C
+C
+…+C
)=2x,
即n•2n=2x,∴x=n•2n-1,
∴1•C
+2•C
+…+n•C
=n•2n-1;
(3)由(1)对任意k∈N*,有kC
=nC
,
∴变形可得
C
=
C
,
∴C
-
C
+
C
-
C
+…+
C
=
-
+
-
+…+
(-1)n
=
(
-
+
-
+…+(-1)n
)
=
(
+
-
+
-
+…+(-1)n
)-
=
(1-1)n+1-
=-
k n |
| n! |
| k!•(n-k)! |
| n! |
| (k-1)!•(n-k)! |
右边=n•
| (n-1)! |
| (k-1)!•(n-1-k+1)! |
| n! |
| (k-1)!•(n-k)! |
∴对任意k∈N*,有kC
k n |
k-1 n-1 |
(2)设0
| C | 0 n |
1 n |
2 n |
n n |
则n•C
n n |
| C | n-1 n |
1 n |
| C | 0 n |
由组合数的性质可得n
| C | 0 n |
1 n |
2 n |
n n |
①③两式相加可得n(
| C | 0 n |
1 n |
2 n |
n n |
即n•2n=2x,∴x=n•2n-1,
∴1•C
1 n |
2 n |
n n |
(3)由(1)对任意k∈N*,有kC
k n |
k-1 n-1 |
∴变形可得
| 1 |
| k |
k-1 n-1 |
| 1 |
| n |
k n |
∴C
0 n |
| 1 |
| 2 |
1 n |
| 1 |
| 3 |
2 n |
| 1 |
| 4 |
3 n |
| (-1)n |
| n+1 |
n n |
=
| 1 |
| n |
| C | 1 n+1 |
| 1 |
| n |
| C | 2 n+1 |
| 1 |
| n |
| C | 3 n+1 |
| 1 |
| n |
| C | 4 n+1 |
| 1 |
| n |
| C | n+1 n+1 |
=
| 1 |
| n |
| C | 1 n+1 |
| C | 2 n+1 |
| C | 3 n+1 |
| C | 4 n+1 |
| C | n+1 n+1 |
=
| 1 |
| n |
| C | 0 n+1 |
| C | 1 n+1 |
| C | 2 n+1 |
| C | 3 n+1 |
| C | 4 n+1 |
| C | n+1 n+1 |
| 1 |
| n |
=
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
点评:本题考查组合数及组合数公式,正确变形是解决问题的关键,属较难题.
练习册系列答案
相关题目