题目内容

已知n∈N*
(1)证明:对任意k∈N*,有kC
 
k
n
=nC
 
k-1
n-1

(2)证明:1•C
 
1
n
+2•C
 
2
n
+…+n•C
 
n
n
=n•2n-1
(3)化简:C
 
0
n
-
1
2
C
 
1
n
+
1
3
C
 
2
n
-
1
4
C
 
3
n
+…+
(-1)n
n+1
C
 
n
n
考点:组合及组合数公式
专题:排列组合
分析:(1)由组合数公式可得左边=
n!
(k-1)!•(n-k)!
,右边=
n!
(k-1)!•(n-k)!
,可证得结论;(2)设0
C
0
n
+1•C
 
1
n
+2•C
 
2
n
+…+n•C
 
n
n
=x,①由组合数的性质可得n
C
0
n
+(n-1)•C
 
1
n
+(n-2)•C
 
2
n
+…+0•C
 
n
n
=x,两式相加即可证明;(3)由(1)对任意k∈N*,有kC
 
k
n
=nC
 
k-1
n-1
,变形可得
1
k
C
 
k-1
n-1
=
1
n
C
 
k
n
,可得原式=
1
n
C
1
n+1
-
1
n
C
2
n+1
+
1
n
C
3
n+1
-
1
n
C
4
n+1
+…+
1
n
(-1)n
C
n+1
n+1
=
1
n
C
1
n+1
-
C
2
n+1
+
C
3
n+1
-
C
4
n+1
+…+(-1)n
C
n+1
n+1
),由(1-1)n+1的二项展开式可得.
解答: 证明:(1)左边=kC
 
k
n
=k•
n!
k!•(n-k)!
=
n!
(k-1)!•(n-k)!

右边=n•
(n-1)!
(k-1)!•(n-1-k+1)!
=
n!
(k-1)!•(n-k)!

∴对任意k∈N*,有kC
 
k
n
=nC
 
k-1
n-1

(2)设0
C
0
n
+1•C
 
1
n
+2•C
 
2
n
+…+n•C
 
n
n
=x,①
则n•C
 
n
n
+(n-1)•
C
n-1
n
+…+1•C
 
1
n
+0
C
0
n
=x,
由组合数的性质可得n
C
0
n
+(n-1)•C
 
1
n
+(n-2)•C
 
2
n
+…+0•C
 
n
n
=x,③
①③两式相加可得n(
C
0
n
+C
 
1
n
+C
 
2
n
+…+C
 
n
n
)=2x,
即n•2n=2x,∴x=n•2n-1
∴1•C
 
1
n
+2•C
 
2
n
+…+n•C
 
n
n
=n•2n-1
(3)由(1)对任意k∈N*,有kC
 
k
n
=nC
 
k-1
n-1

∴变形可得
1
k
C
 
k-1
n-1
=
1
n
C
 
k
n

∴C
 
0
n
-
1
2
C
 
1
n
+
1
3
C
 
2
n
-
1
4
C
 
3
n
+…+
(-1)n
n+1
C
 
n
n

=
1
n
C
1
n+1
-
1
n
C
2
n+1
+
1
n
C
3
n+1
-
1
n
C
4
n+1
+…+
1
n
(-1)n
C
n+1
n+1

=
1
n
C
1
n+1
-
C
2
n+1
+
C
3
n+1
-
C
4
n+1
+…+(-1)n
C
n+1
n+1

=
1
n
C
0
n+1
+
C
1
n+1
-
C
2
n+1
+
C
3
n+1
-
C
4
n+1
+…+(-1)n
C
n+1
n+1
)-
1
n

=
1
n
(1-1)n+1-
1
n
=-
1
n
点评:本题考查组合数及组合数公式,正确变形是解决问题的关键,属较难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网