题目内容
已知α∈(0,
),且sin(α-
)=
,则sinα=
.
| π |
| 2 |
| π |
| 4 |
| 3 |
| 5 |
7
| ||
| 10 |
7
| ||
| 10 |
分析:通过角的范围以及三角函数值,求出cos(α-
),然后求出sinα的值.
| π |
| 4 |
解答:解:因为α∈(0,
),sin(α-
)=
,∴α-
∈(0,
),
所以cos(α-
)=
=
,
sinα=sin(α-
+
)=sin(α-
)cos
=cos(α-
)sin
=
×
+
×
=
.
故答案为:
.
| π |
| 2 |
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| π |
| 4 |
所以cos(α-
| π |
| 4 |
1-sin 2(α-
|
| 4 |
| 5 |
sinα=sin(α-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| ||
| 2 |
7
| ||
| 10 |
故答案为:
7
| ||
| 10 |
点评:本题考查两角和与差的正弦函数,同角三角函数间的基本关系,考查计算能力.
练习册系列答案
相关题目