题目内容
16.设函数f(x)和g(x)分别是R上的奇函数和偶函数,则函数h(x)=g(x)|f(x)|的图象(( )| A. | 关于原点对称 | B. | 关于x轴对称 | C. | 关于y轴对称 | D. | 关于直线y=x对称 |
分析 利用函数的奇偶性,转化求解判断即可.
解答 解:函数f(x)和g(x)分别是R上的奇函数和偶函数,
可得:f(-x)=-f(x)和g(-x)=g(x)
则函数h(x)=g(x)|f(x)|,可得h(-x)=g(-x)|f(-x)|=g(x)|f(x)|=h(x)
函数h(x)是偶函数,函数的图象关于y轴对称.
故选:C.
点评 本题考查函数的图象的对称性,函数的奇偶性的应用,考查计算能力.
练习册系列答案
相关题目
6.
如图,有一建筑物OP,为了测量它的高度,在地面上选一长度为40m的基线AB,若在点A处测得P点的仰角为30°,在B点处的仰角为45°,且∠AOB=30°,则建筑物的高度为( )
| A. | 20m | B. | 20$\sqrt{2}$m | C. | 20$\sqrt{3}$m | D. | 40m |
7.某校随机调查了110名不同性别的学生每天在校的消费情况,规定:50元以下为正常消费,大于或等于50元为非正常消费.统计后,得到如下的2×2列联表,已知在调查对象中随机抽取1人,为非正常消费的概率为$\frac{3}{11}$.
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,能否有99%的把握认为消费情况与性别有关系?
附临界值表参考公式:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 正常 | 非正常 | 合计 | |
| 男 | 30 | 20 | 50 |
| 女 | 50 | 10 | 60 |
| 合计 | 80 | 30 | 110 |
(Ⅱ)根据列联表的数据,能否有99%的把握认为消费情况与性别有关系?
附临界值表参考公式:
| P(K2≥k0) | 0.100 | 0.05 | 0.025 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
11.复数z=$\frac{(i-1)^{2}+2}{i+1}$的实部为( )
| A. | -2 | B. | -1 | C. | 1、 | D. | 0 |
8.口袋中装有一些大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.43,摸出白球的概率是0.27,那么摸出黑球的概率是( )
| A. | 0.43 | B. | 0.27 | C. | 0.3 | D. | 0.7 |
5.若点A的坐标是(3,2),F是抛物线y2=2x的焦点,点P在抛物线上移动,为使得|PA|+|PF|取得最小值,则P点的坐标是( )
| A. | (1,2) | B. | (2,1) | C. | (2,2) | D. | (0,1) |