题目内容
13.已知函数f(x)=|x+b2|-|-x+1|,g(x)=|x+a2+c2|+|x-2b2|,其中a,b,c均为正实数,且ab+bc+ac=1.(Ⅰ)当b=1时,求不等式f(x)≥1的解集;
(Ⅱ)当x∈R时,求证f(x)≤g(x).
分析 (Ⅰ)当b=1时,把f(x)用分段函数来表示,分类讨论,求得f(x)≥1的解集.
(Ⅱ)当x∈R时,先求得f(x)的最大值为b2+1,再求得g(x)的最小值,根据g(x)的最小值减去f(x)的最大值大于或等于零,可得f(x)≤g(x)成立.
解答 解:(Ⅰ)由题意,当b=1时,f(x)=|x+b2|-|-x+1|=$\left\{\begin{array}{l}{-2,x≤-1}\\{2x,-1<x<1}\\{2,x≥1}\end{array}\right.$,
当x≤-1时,f(x)=-2<1,不等式f(x)≥1无解,不等式f(x)≥1的解集为∅;
当-1<x<1时,f(x)=2x,由不等式f(x)≥1,解得x≥$\frac{1}{2}$,所以$\frac{1}{2}$≤x<1;
当x≥1时,f(x)=2≥1恒成立,
所以不等式f(x)≥1的解集为[$\frac{1}{2}$,+∞).
(Ⅱ)(Ⅱ)当x∈R时,f(x)=|x+b2|-|-x+1|≤|x+b2 +(-x+1)|=|b2+1|=b2+1;
g(x)=|x+a2+c2|+|x-2b2|=≥|x+a2+c2-(x-2b2)|=|a2+c2+2b2|=a2+c2+2b2.
而 a2+c2+2b2-(b2+1)=a2+c2+b2-1=$\frac{1}{2}$( a2+c2+b2+a2+c2+b2 )-1≥ab+bc+ac-1=0,
当且仅当a=b=c=$\frac{\sqrt{3}}{3}$时,等号成立,即 a2+c2+2b2≥b2+1,即f(x)≤g(x).
点评 本题主要考查带有绝对值的函数,绝对值三角不等式的应用,比较2个数大小的方法,属于中档题.
练习册系列答案
相关题目
1.已知tanα=2,则sin2α+sinαcosα的值为( )
| A. | $\frac{6}{5}$ | B. | 1 | C. | $\frac{4}{5}$ | D. | $\frac{2}{3}$ |
5.质检过后,某校为了解理科班学生的数学、物理学习情况,利用随机数表法从全年级600名理科生抽取100名学生的成绩进行统计分析,已知学生考号的后三位分别为000,001,002,…,599.
(1)若从随机数表的第5行第7列的数开始向右读,请依次写出抽取的前7人的后三位考号;
(2)如果题(1)中随机抽取到的7名同学的数学、物理成绩(单位:分)对应如表:
从这7名同学中随机抽取3名同学,记这3名同学中数学和物理成绩均为优秀的人数为ζ,求ζ的分布列和数学期望(规定成绩不低于120分的为优秀).附:(下面是摘自随机数表的第4行到第6行)
(1)若从随机数表的第5行第7列的数开始向右读,请依次写出抽取的前7人的后三位考号;
(2)如果题(1)中随机抽取到的7名同学的数学、物理成绩(单位:分)对应如表:
| 数学成绩 | 90 | 97 | 105 | 113 | 127 | 130 | 135 |
| 物理成绩 | 105 | 116 | 120 | 127 | 135 | 130 | 140 |
2.设集合M={x|x2≤x},N={x|lgx≤0},则M∩N=( )
| A. | [0,1] | B. | (0,1] | C. | [0,1) | D. | (-∞,1] |