题目内容

13.设函数$f(x)=\frac{2^x}{{1+{2^x}}}(x∈R)$,若用[m]表示不超过实数m的最大整数,则函数$y=[f(x)-\frac{1}{2}]+[f(-x)+\frac{1}{2}]$的值域为{0,1}.

分析 化简$y=[f(x)-\frac{1}{2}]+[f(-x)+\frac{1}{2}]$=[$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$]+[$\frac{1}{1+{2}^{x}}$+$\frac{1}{2}$],从而分类讨论以确定函数的值,从而解得.

解答 解:$y=[f(x)-\frac{1}{2}]+[f(-x)+\frac{1}{2}]$
=[$\frac{{2}^{x}}{1+{2}^{x}}$-$\frac{1}{2}$]+[$\frac{{2}^{-x}}{1+{2}^{-x}}$+$\frac{1}{2}$]
=[$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$]+[$\frac{1}{1+{2}^{x}}$+$\frac{1}{2}$],
∵0<$\frac{1}{1+{2}^{x}}$<1,
∴-$\frac{1}{2}$<$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$<$\frac{1}{2}$,$\frac{1}{2}$<$\frac{1}{1+{2}^{x}}$+$\frac{1}{2}$<$\frac{3}{2}$,
①当0<$\frac{1}{1+{2}^{x}}$<$\frac{1}{2}$时,
0<$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$<$\frac{1}{2}$,$\frac{1}{2}$<$\frac{1}{1+{2}^{x}}$+$\frac{1}{2}$<1,
故y=0;
②当$\frac{1}{1+{2}^{x}}$=$\frac{1}{2}$时,
$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$=0,$\frac{1}{1+{2}^{x}}$+$\frac{1}{2}$=1,
故y=1;
③$\frac{1}{2}$<$\frac{1}{1+{2}^{x}}$<1时,
-$\frac{1}{2}$<$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$<0,1<$\frac{1}{1+{2}^{x}}$+$\frac{1}{2}$<$\frac{3}{2}$,
故y=-1+1=0;
故函数$y=[f(x)-\frac{1}{2}]+[f(-x)+\frac{1}{2}]$的值域为{0,1}.
故答案为:{0,1}.

点评 本题考查了学生的化简运算能力及分类讨论的思想应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网