题目内容

20.已知函数$f(x)=cos(\frac{2π}{3}x)+(a-1)sin(\frac{π}{3}x)+a,g(x)={2^x}-{x^2}$,若f[g(x)]≤0对x∈[0,1]恒成立,则实数a的取值范围是(  )
A.$(-∞,\sqrt{3}-1]$B.(-∞,0]C.[0,$\sqrt{3}$-1]D.$(-∞,1-\sqrt{3}]$

分析 令t=g(x),x∈[0,1],则g′(x)=2xln2-2x.设g′(x0)=0,利用单调性可得:g(x)在x∈[0,1]上的值域为[1,g(x0)],(g(x0)=2x0-x02).由f[g(x)]≤0对x∈[0,1]恒成立,可得$cos(\frac{2π}{3}t)$+(a-1)$sin(\frac{π}{3}t)$+a≤0,a≤2$sin\frac{π}{3}t$-1=h(t),t∈[1,g(x0)],即可得出.

解答 解:令t=g(x),x∈[0,1],则g′(x)=2xln2-2x
设g′(x0)=0,则函数在[0,x0]上单调递增,在[x0,1]上单调递减,
g(x)在x∈[0,1]上的值域为[1,g(x0)],(g(x0)=2x0-x02<2).
∵f[g(x)]≤0对x∈[0,1]恒成立,
∴f(t)≤0,即$cos(\frac{2π}{3}t)$+(a-1)$sin(\frac{π}{3}t)$+a≤0,
a≤$\frac{sin\frac{πt}{3}-cos\frac{2πt}{3}}{1+sin\frac{πt}{3}}$=2$sin\frac{π}{3}t$-1=h(t),t∈[1,g(x0)],
则h(t)的最小值=2×$\frac{\sqrt{3}}{2}$-1=$\sqrt{3}$-1.
∴a≤$\sqrt{3}$-1.
故选:A.

点评 本题考查了利用导数研究函数的单调性极值与最值、三角函数的单调性、恒成立问题等价转化方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网