题目内容
1.已知a>0.且a2x=$\sqrt{2}$-1,求下列代数式的值.(1)(ax+a-x)(ax-a-x);
(2)$\frac{{a}^{x}+{a}^{-x}}{{a}^{x}-{a}^{-x}}$;
(3)$\frac{{a}^{3x}+{a}^{-3x}}{{a}^{x}+{a}^{-x}}$.
分析 (1)由已知条件利用平方差公式能求出(ax+a-x)(ax-a-x)的值.
(2)由$\frac{{a}^{x}+{a}^{-x}}{{a}^{x}-{a}^{-x}}$=$\frac{{a}^{2x}+1}{{a}^{2x}-1}$,利用已知条件能求出结果.
(3)由$\frac{{a}^{3x}+{a}^{-3x}}{{a}^{x}+{a}^{-x}}$=$\frac{{a}^{6x}+1}{{a}^{4x}+{a}^{2x}}$,利用已知条件能求出结果.
解答 解:(1)∵a>0,且a2x=$\sqrt{2}$-1,
∴(ax+a-x)(ax-a-x)=a2x-a-2x
=$\sqrt{2}-1$-$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}-1-(\sqrt{2}+1)$=-2.
(2)$\frac{{a}^{x}+{a}^{-x}}{{a}^{x}-{a}^{-x}}$=$\frac{{a}^{2x}+1}{{a}^{2x}-1}$
=$\frac{\sqrt{2}-1+1}{\sqrt{2}-1-1}$=$\frac{\sqrt{2}}{\sqrt{2}-2}$
=$\frac{\sqrt{2}(\sqrt{2}+2)}{2-4}$=-$\sqrt{2}-1$.
(3)$\frac{{a}^{3x}+{a}^{-3x}}{{a}^{x}+{a}^{-x}}$=$\frac{{a}^{6x}+1}{{a}^{4x}+{a}^{2x}}$
=$\frac{(\sqrt{2}-1)^{3}+1}{(\sqrt{2}-1)^{2}+(\sqrt{2}-1)}$
=$\frac{5\sqrt{2}-6}{2-\sqrt{2}}$=$\frac{(5\sqrt{2}-6)(2+\sqrt{2})}{4-2}$
=2$\sqrt{2}-1$.
点评 本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质和运算法则的合理运用.
| A. | M=N | B. | M⊆N | C. | M?N | D. | M∩N=∅ |
| A. | (1,2) | B. | (0,2) | C. | (0,1) | D. | (1,+∞) |