ÌâÄ¿ÄÚÈÝ
11£®Ä³ÊÐ×éÖ¯Ò»´Î¸ßÈýµ÷Ñп¼ÊÔ£¬¿¼ÊÔºóͳ¼ÆµÄÊýѧ³É¼¨·þ´ÓÕý̬·Ö²¼£¬ÆäÃܶȺ¯ÊýΪf£¨x£©=$\frac{1}{10\sqrt{2¦Ð}}$e${\;}^{-\frac{£¨x-80£©^{2}}{200}}$£¬ÔòÏÂÁÐÃüÌâÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | ¸ÃÊÐÔÚÕâ´Î¿¼ÊÔµÄÊýѧƽ¾ù³É¼¨Îª80·Ö | |
| B£® | ·ÖÊýÔÚ120·ÖÒÔÉϵÄÈËÊýÓë·ÖÊýÔÚ60·ÖÒÔϵÄÈËÊýÏàͬ | |
| C£® | ·ÖÊýÔÚ110·ÖÒÔÉϵÄÈËÊýÓë·ÖÊýÔÚ50·ÖÒÔϵÄÈËÊýÏàͬ | |
| D£® | ¸ÃÊÐÕâ´Î¿¼ÊÔµÄÊýѧ³É¼¨±ê×¼²îΪ10 |
·ÖÎö ¸ù¾ÝÃܶȺ¯ÊýµÄÌØµã¿ÉµÃ£ºÆ½¾ù³É¼¨¼°±ê×¼²î£¬ÔÙ½áºÏÕý̬ÇúÏߵĶԳÆÐԿɵ÷ÖÊýÔÚ110·ÖÒÔÉϵÄÈËÊýÓë·ÖÊýÔÚ50·ÖÒÔϵÄÈËÊýÏàͬ£®´Ó¶ø¼´¿ÉÑ¡³ö´ð°¸£®
½â´ð
½â£º¡ßÆäÃܶȺ¯ÊýΪf£¨x£©=$\frac{1}{10\sqrt{2¦Ð}}$e${\;}^{-\frac{£¨x-80£©^{2}}{200}}$£¬
¡à¸ÃÊÐÕâ´Î¿¼ÊÔµÄÊýѧƽ¾ù³É¼¨Îª80·Ö£¬
¸ÃÊÐÕâ´Î¿¼ÊÔµÄÊýѧ±ê×¼²îΪ10£¬
´ÓͼÐÎÉÏ¿´£¬Ëü¹ØÓÚÖ±Ïßx=80¶Ô³Æ£¬
ÇÒ50Óë110Ò²¹ØÓÚÖ±Ïßx=80¶Ô³Æ£¬
¹Ê·ÖÊýÔÚ110·ÖÒÔÉϵÄÈËÊýÓë·ÖÊýÔÚ50·ÖÒÔϵÄÈËÊýÏàͬ£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÕý̬·Ö²¼ÇúÏßµÄÌØµã¼°ÇúÏßËù±íʾµÄÒâÒ壬ÒÔ¼°ÀûÓü¸ºÎͼÐεĶԳÆÐÔÇó½â£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®ÒÑÖªËÄÃæÌåABCDµÄÁùÌõÀâÖУ¬AC=BD=4£¬ÆäÓàµÄËÄÌõÀâµÄ³¤¶¼ÊÇ3£¬Ôò´ËËÄÃæÌåµÄÍâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 43¦Ð | B£® | 17¦Ð | C£® | 34¦Ð | D£® | $\frac{17¦Ð}{3}$ |
3£®Éèa=${¡Ò}_{0}^{¦Ð}$£¨sinx+cosx£©dx£¬ÇÒ¶þÏîʽ£¨a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$£©nµÄËùÓжþÏîʽϵÊýÖ®ºÍΪ64£¬ÔòÆäÕ¹¿ªÊ½Öк¬x2ÏîµÄϵÊýÊÇ£¨¡¡¡¡£©
| A£® | -192 | B£® | 192 | C£® | -6 | D£® | 6 |
20£®Èô$¦Á£¬¦Â¡Ê£¨{-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}}£©$£¬ÇÒtan¦Á£¬tan¦ÂÊÇ·½³Ì${x^2}+4\sqrt{3}x+5=0$µÄÁ½¸ö¸ù£¬Ôò¦Á+¦ÂµÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{¦Ð}{3}$»ò$\frac{4¦Ð}{3}$ | B£® | $\frac{¦Ð}{3}$»ò$-\frac{2¦Ð}{3}$ | C£® | $\frac{¦Ð}{3}$ | D£® | $-\frac{2¦Ð}{3}$ |