题目内容
7.如图,已知O为△ABC的重心,∠BOC=90°,若4BC2=AB•AC,则A的大小为$\frac{π}{3}$.分析 利用余弦定理、直角三角形的性质、三角函数求值即可得出.
解答 解:cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$,连接AO并且延长与BC相交于点D.![]()
设AD=m,∠ADB=α.
则AB2=${m}^{2}+\frac{B{C}^{2}}{4}$-2×$\frac{BC}{2}$×mcosα,
AC2=m2+$\frac{B{C}^{2}}{4}$-2m×$\frac{BC}{2}$×cos(π-α),
相加可得:AB2+AC2=2m2+$\frac{1}{2}B{C}^{2}$.
m2=(3OD)2=$9×(\frac{1}{2}BC)^{2}$=$\frac{9}{4}B{C}^{2}$.
∴AB2+AC2=5BC2.
又4BC2=AB•AC,
∴cosA=$\frac{1}{2}$,A∈(0,π)
∴A=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.
点评 本题考查了余弦定理、中线长定理、三角函数求值、直角三角形的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.设函数f(x)在点x0附近有定义,且有f(x0+△x)-f(x0)=a△x+b(△x)2,其中a,b为常数,则( )
| A. | f'(x)=a | B. | f'(x)=b | C. | f'(x0)=a | D. | f'(x0)=b |
15.定义在R上的函数f(x)既是奇函数又是周期函数.若f(x)的最小正周期是π,且当$x∈[0,\frac{π}{2}]$时,f(x)=sinx,则$f(\frac{5}{3}π)$的值为( )
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
12.设f(x)为可导函数,且满足$\underset{lim}{x→0}$$\frac{f(1)-f(1+2x)}{2x}$=1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为( )
| A. | 2 | B. | -2 | C. | 1 | D. | -1 |
16.已知正三棱柱ABC-A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比( )
| A. | 5:1 | B. | 2:1 | C. | 4:1 | D. | $\sqrt{3}$:1 |