题目内容
【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是____________.
【答案】![]()
【解析】∵圆C的方程可化为(x-4)2+y2=1,∴圆C的圆心为(4,0),半径为1.由题意知,直线y=kx-2上至少存在一点A(x0,kx0-2),以该点为圆心,1为半径的圆与圆C有公共点,∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.
∵ACmin即为点C到直线y=kx-2的距离
,
∴
≤2,解得0≤k≤
.∴k的最大值是
.
【题型】填空题
【结束】
15
【题目】在平面直角坐标系
中,直线
.
(1)若直线
与直线
平行,求实数
的值;
(2)若
,
,点
在直线
上,已知
的中点在
轴上,求点
的坐标.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)根据两直线平行,对应方向向量共线,列方程即可求出
的值;(2)根据
时,直线
的方程设出点
的坐标,由此求出
的中点坐标,再由中点在
轴上求出点
的坐标.
试题解析:(1)∵直线
与直线
平行,
∴
,
∴
,经检验知,满足题意.
(2)由题意可知:
,
设
,则
的中点为
,
∵
的中点在
轴上,∴
,
∴
.
练习册系列答案
相关题目