题目内容
(本小题满分10分)选修4—5:不等式选讲
已知a+b=1,对,b∈(0,+∞),+≥|2x-1|-|x+1|恒成立,
(Ⅰ)求+的最小值;
(Ⅱ)求x的取值范围。
(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在局以内(含局)赢得比赛的概率;
(2)记为比赛决出胜负时的总局数,求的分布列和期望.
设集合,,则 .
在平面直角坐标系中,已知⊙C:,A为⊙C与x轴负半轴的交点,过A作⊙C的弦AB,记线段AB的中点为M . 若OA = OM,则直线AB的斜率为 .
袋中有大小、质地相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得2分,摸出黑球,得1分,则3次摸球所得总分至少是4分的概率是 .
(本小题满分12分)如图,在四棱锥P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求三棱锥A-PBC的体积.
若函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,g(x)=f(x)-mx-2m有两个零点,则实数m的取值范围是( ).
A.0<m≤ B.0<m< C.<m≤1 D.<m<1
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设=λ(0≤A≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.
已知为虚数单位,为实数,复数在复平面内对应的点为,则“”是“点在第四象限”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条