题目内容
9.已知$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$,则函数f(x)=( )| A. | x2-2(x≠0) | B. | x2-2(x≥2) | C. | x2-2(|x|≥2) | D. | x2-2 |
分析 利用配方法求解函数的解析式即可.
解答 解:$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$=${(x+\frac{1}{x})}^{2}-2$,
∴f(x)=x2-2(|x|≥2).
故选:C.
点评 本题考查函数的解析式的求法,注意函数的定义域.
练习册系列答案
相关题目
4.设点P(x,y)满足条件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤2x+2}\end{array}\right.$,点Q(a,b)满足ax+by≤1恒成立,其中O是原点,a≤0,b≥0,则Q点的轨迹所围成的图形的面积为( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
14.某报对“男女同龄退休”这一公众关注的问题进行了民意调查,数据如表
根据表中数据,能否认为对这一问题的看法与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
| 看法 性别 | 赞同 | 反对 | 合计 |
| 男 | 198 | 217 | 415 |
| 女 | 476 | 107 | 585 |
| 合计 | 674 | 326 | 1000 |
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
| P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.760 | 3.841 | 5.024 | 60635 | 7.879 | 10.828 |
1.已知F1(-$\sqrt{2}$,0)、F2($\sqrt{2}$,0)为椭圆的焦点,A为其上顶点,∠F1AF2=90°,则圆的离心率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{4}$ |
19.已知向量$\overrightarrow{a}$=(2,3),则与$\overrightarrow{a}$垂直的一个向量$\overrightarrow{b}$及$\overrightarrow{a}$的长度分别为( )
| A. | $\overrightarrow{b}$=(3,2),|$\overrightarrow{a}$|=5 | B. | $\overrightarrow{b}$=(-3,2),|$\overrightarrow{a}$|=13 | C. | $\overrightarrow{b}$=(3,-2),|$\overrightarrow{a}$|=5 | D. | $\overrightarrow{b}$=(3,-2),|$\overrightarrow{a}$|=$\sqrt{13}$ |