题目内容

已知定点F为(0,a)(a≠0),点PM分别在xy轴上,满足,点N满足.?

(1)求N点的轨迹方程C;

(2)过F作一条斜率为k的直线l,l与曲线C交于AB两点,设G(0,-a),∠AGB=θ,求证:?0<θ.

(1)解:∵,?

PMN的中点.?

N(x,y),则M(0,-y),P(,0).?

于是=(,-a),=(,y).?

·=0,∴()2-ay=0,?

N点的轨迹方程为x2=4ay.                                                                                   ?

(2)证明:由题意知直线l的方程为y=kx+a,代入x2=4ay,得x2-4akx-4a2=0.?

A(x1,y1),B(x2,y2),则x1+x2=4ak,x1x2=-4a2.                                                               ?

y1+y2=(kx1+a)+(kx2+a)=k(x1+x2)+2a=4ak2+2a,?

y1y2=(kx1+a)(kx2+a)=k2x1x2+ak(x1+x2)+a2=-4a2k2+4a2k2+a2=a2.                                         ?

G(0,-a),?

=(x1,y1+a),=(x2,y2+a).?

·=x1x2+(y1+a)(y2+a)=x1x2+y1y2+a(y1+y2)+a2=-4a2+a2+a(4ak2+2a)+a2=4a2k2≥0,

即||||cosθ≥0.?

∴cosθ≥0.故0≤θ.                                                                                       ?

又点G(0,-a)不在直线l上,?

ABG三点不共线.?

故0<θ.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网