题目内容
11.已知函数f(x)=ex-e-x+1的导函数为f′(x),则函数f′(x)的奇偶性为( )| A. | 奇函数 | B. | 偶函数 | ||
| C. | 非奇非偶函数 | D. | 既是奇函数也是偶函数 |
分析 求函数的导数,结合函数单调性之间的定义进行判断即可.
解答 解:函数的导数为f′(x)=ex+e-x,
则f′(-x)=ex+e-x=f′(x),
即函数f′(x)为偶函数,
故选:B.
点评 本题主要考查函数奇偶性的判断,结合函数的导数公式是解决本题的关键.
练习册系列答案
相关题目
6.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q,每列上的数从上到下都成等差数列.aij表示位于第i
行第j列的数,其中${a_{24}}=\frac{1}{8}$,a42=1,${a_{54}}=\frac{5}{16}$.
(Ⅰ) 求q的值;
(Ⅱ) 求aij的计算公式;
(Ⅲ)设数列{bn}满足bn=ann,{bn}的前n项和为Sn,求Sn.
| a11 | a12 | a13 | … |
| a21 | a22 | a23 | … |
| a31 | a32 | a33 | … |
| … | … | … | … |
(Ⅰ) 求q的值;
(Ⅱ) 求aij的计算公式;
(Ⅲ)设数列{bn}满足bn=ann,{bn}的前n项和为Sn,求Sn.
3.已知A、B、C是直线l上三点,点O不在直线l上,向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$满足:$\overrightarrow{OA}$=(y+1)$\overrightarrow{OB}$-$\overrightarrow{OC}$1nx,x、y之间满足函数关系y=f(x),且不等式2x2≤f(x)+m2-2bm-1对任意的x∈[$\frac{1}{2}$,1]及b∈[-1,1]都恒成立,则实数m的取值范围为( )
| A. | m≤-3 | B. | m≥3 | C. | m≤-3或m≥3 | D. | m≥-3或m≤3 |
20.已知a=ln$\frac{1}{2}$,b=3lg2,c=2${\;}^{-\frac{1}{2}}$,则a,b,c的大小关系为( )
| A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | b<c<a |
1.已知y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$(y<1),则用含y的代数式来表示的x=( )
| A. | $\frac{1+y}{1-y}$ | B. | ln$\frac{1+y}{1-y}$ | C. | $\frac{1}{2}$ln$\frac{1+y}{1-y}$ | D. | $\frac{1}{2}$ln$\frac{1-y}{1+y}$ |