题目内容
求值
(1)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
(2)已知tanβ=
,求sin2β-3sinβcosβ+4cos2β的值.
(1)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
(2)已知tanβ=
| 1 | 2 |
分析:(1)利用三角函数的诱导公式对sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)化简即可求其值;
(2)利用tanβ=
,将所求关系式的分母“1”用sin2β+cos2β替换,转换为关于tanβ的关系式即可.
(2)利用tanβ=
| 1 |
| 2 |
解答:解:(1)∵sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
=sin2120°+cos180°+tan45°-cos30°+sin150°
=
-1+1-
+
=
;
(2)∵tanβ=
,
∴sin2β-3sinβcosβ+4cos2β
=
=
=
.
=sin2120°+cos180°+tan45°-cos30°+sin150°
=
| 3 |
| 4 |
| ||
| 2 |
| 1 |
| 2 |
=
5-2
| ||
| 4 |
(2)∵tanβ=
| 1 |
| 2 |
∴sin2β-3sinβcosβ+4cos2β
=
| sin2β-3sinβcosβ+4cos2β |
| sin2β+cos2β |
=
| tan2β-3tanβ+4 |
| tan2β+1 |
=
| 11 |
| 5 |
点评:本题考查三角函数的化简求值,考查同角三角函数间的基本关系及三角函数的诱导公式,考查转化思想与运算能力,属于中档题.
练习册系列答案
相关题目