题目内容

求值
(1)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
(2)已知tanβ=
1
2
,求sin2β-3sinβcosβ+4cos2β的值.
(1)∵sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
=sin2120°+cos180°+tan45°-cos30°+sin150°
=
3
4
-1+1-
3
2
+
1
2

=
5-2
3
4

(2)∵tanβ=
1
2

∴sin2β-3sinβcosβ+4cos2β
=
sin2β-3sinβcosβ+4cos2β
sin2β+cos2β

=
tan2β-3tanβ+4
tan2β+1

=
11
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网