题目内容
求值
(1)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
(2)已知tanβ=
,求sin2β-3sinβcosβ+4cos2β的值.
(1)sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
(2)已知tanβ=
| 1 |
| 2 |
(1)∵sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)
=sin2120°+cos180°+tan45°-cos30°+sin150°
=
-1+1-
+
=
;
(2)∵tanβ=
,
∴sin2β-3sinβcosβ+4cos2β
=
=
=
.
=sin2120°+cos180°+tan45°-cos30°+sin150°
=
| 3 |
| 4 |
| ||
| 2 |
| 1 |
| 2 |
=
5-2
| ||
| 4 |
(2)∵tanβ=
| 1 |
| 2 |
∴sin2β-3sinβcosβ+4cos2β
=
| sin2β-3sinβcosβ+4cos2β |
| sin2β+cos2β |
=
| tan2β-3tanβ+4 |
| tan2β+1 |
=
| 11 |
| 5 |
练习册系列答案
相关题目