题目内容

1.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}•\overrightarrow{n}$=sin2C,且A、B、C分别为△ABC的三边a、b、c所对的角,S△ABC为△ABC的面积.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等差数列,且$\overrightarrow{CA}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{162\sqrt{3}}{{S}_{△ABC}}$,求△ABC的外接圆半径R.

分析 (1)利用两个向量的数量积公式求得$\overrightarrow{m}•\overrightarrow{n}$=sin(A+B),再由A+B+C=π,得sinC=sin2C,可得从而求得C的值.
(2)由sinA,sinC,sinB成等差数列,得2sinC=sinA+sinB,由条件利用正弦定理、余弦定理求得c边的长,由正弦定理2R=$\frac{c}{sinC}$,求得R.

解答 解:$\overrightarrow{m}•\overrightarrow{n}$=sinA•cosB,+sinB•cosA=sin(A+B),
△ABC中,A+B+C=π,
$\overrightarrow{m}•\overrightarrow{n}$=sinC=sin2C,
故C=$\frac{π}{3}$,
∵sinA,sinB,sinC成等差数列,
∴sinA+sinC=2sinB,
由正弦定理可知a+b=2c,
$\overrightarrow{CA}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\overrightarrow{CA}$•$\overrightarrow{CB}$=丨$\overrightarrow{CA}$丨•丨$\overrightarrow{CB}$丨cos$\frac{π}{3}$=$\frac{1}{2}$ab,
$\frac{162\sqrt{3}}{{S}_{△ABC}}$=$\frac{162\sqrt{3}}{\frac{1}{2}abcosC}$=$\frac{648}{ab}$,
$\frac{1}{2}$ab=$\frac{648}{ab}$,
∴ab=36,
由余弦定理得:c2=a2+b2-2abcosC=(a+b)2-3ab=4c2-108,
∴c=6,
求△ABC的外接圆半径R.2R=$\frac{c}{sinC}$,
∴R=2$\sqrt{3}$.

点评 本题主要考查等差数列的性质,查两个向量的数量积公式、正弦定理、余弦定理的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网