题目内容
10.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点M,使得($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0 (其中O为坐标原点),且|$\overrightarrow{M{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|,则双曲线的离心率为( )| A. | $\sqrt{5}$-1 | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\sqrt{3}$+1 |
分析 依题意双曲线右支上存在一点M,使得($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0判断出∠F1MF2=90°,设出|MF2|=t,则|MF1|=$\sqrt{3}$t,进而利用双曲线定义可用t表示出a,根据勾股定理求得t和c的关系,最后可求得双曲线的离心率.
解答 解:∵双曲线右支上存在一点M,使得($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0,
∴∠F1MF2=90°
设|MF2|=t,则|MF1|=$\sqrt{3}$t,
∴a=$\frac{\sqrt{3}-1}{2}$t,
∵t2+3t2=4c2,∴t=c
∴e=$\frac{c}{a}$=$\sqrt{3}$+1
故选:D.
点评 本题主要考查了双曲线的简单性质.考查了学生对双曲线定义的理解和灵活运用.
练习册系列答案
相关题目
5.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[0,1]上单调递增,设a=f(3),b=f($\sqrt{2}$),c=f(2),则a,b,c大小关系是( )
| A. | b>c>a | B. | a>c>b | C. | a>b>c | D. | c>b>a |
15.
设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,为了得到函数y=cos2x的图象,只需将函数y=f(x)的图象( )
| A. | 向左平移$\frac{π}{6}$个单位 | B. | 向右平移$\frac{π}{6}$个单位 | ||
| C. | 向左平移$\frac{π}{3}$个单位 | D. | 向右平移$\frac{π}{3}$个单位 |