题目内容
已知正项等差数列an的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设
,记数列bn的前n项和为Tn,求Tn.
解:(Ⅰ)∵S3=12,即a1+a2+a3=12,
∴3a2=12,所以a2=4.(1分)
又∵2a1,a2,a3+1成等比数列,
∴a22=2a1•(a3+1),即a22=2(a2-d)•(a2+d+1),(3分)
解得,d=3或d=-4(舍去),
∴a1=a2-d=1,故an=3n-2.(6分)
(Ⅱ)
,
∴
,①
①×
得
.②
①-②得
=
,(10分)
∴
.(12分)
分析:(Ⅰ)先利用等差数列的性质以及S3=12求出a2=4;再代入2a1,a2,a3+1成等比数列求出公差即可求{an}的通项公式;
(Ⅱ)把(Ⅰ)的结论代入,直接利用数列求和的错位相减法即可求Tn.
点评:本题的第二问考查了数列求和的错位相减法.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.
∴3a2=12,所以a2=4.(1分)
又∵2a1,a2,a3+1成等比数列,
∴a22=2a1•(a3+1),即a22=2(a2-d)•(a2+d+1),(3分)
解得,d=3或d=-4(舍去),
∴a1=a2-d=1,故an=3n-2.(6分)
(Ⅱ)
∴
①×
①-②得
∴
分析:(Ⅰ)先利用等差数列的性质以及S3=12求出a2=4;再代入2a1,a2,a3+1成等比数列求出公差即可求{an}的通项公式;
(Ⅱ)把(Ⅰ)的结论代入,直接利用数列求和的错位相减法即可求Tn.
点评:本题的第二问考查了数列求和的错位相减法.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.
练习册系列答案
相关题目
已知正项等差数列{an}的前20项的和为100,那么a7a14的最大值为( )
| A、75 | B、100 | C、50 | D、25 |