题目内容
已知函数f(x)=(x-2)2,设a1=3,an+1=an-
(1)证明:数列{an-2}是等比数列,并求出数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn.
| f(an) |
| 2an-4 |
(1)证明:数列{an-2}是等比数列,并求出数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)根据等比数列的定义即可证明数列{an-2}是等比数列,结合等比数列的通项公式即可求数列{an}的通项公式;
(2)求出bn=nan的通项公式,利用错位相减法即可求数列{bn}的前n项和Sn.
(2)求出bn=nan的通项公式,利用错位相减法即可求数列{bn}的前n项和Sn.
解答:
(1)证明:∵an+1=an-
,f(x)=(x-2)2,
∴an+1=an-
=an-
=
an+1,
即an+1-2
an+1-2=
(an-2),
即数列{an-2}是等比数列,首项为a1-2=3-2=1,公比q=
的等比数列,
则an-2=(
)n-1,即an=(
)n-1+2,
(2)bn=nan=
+2n,
数列{bn}的前n项和Sn=(
+
+
+…+
)+2(1+2+3+…+n)=(
+
+
+…+
)+n2+n,
令Tn=(
+
+
+…+
),
则
Tn=
+
+…+
,
两式相减得
Tn=1+
+
+…+
-
=
-
=2(1-
)-
,
即Tn=4(1-
)-
=4-
,
故Sn=Tn+n2+n=4-
+n2+n.
| f(an) |
| 2an-4 |
∴an+1=an-
| f(an) |
| 2an-4 |
| (an-2)2 |
| 2(an-2) |
| 1 |
| 2 |
即an+1-2
| 1 |
| 2 |
| 1 |
| 2 |
即数列{an-2}是等比数列,首项为a1-2=3-2=1,公比q=
| 1 |
| 2 |
则an-2=(
| 1 |
| 2 |
| 1 |
| 2 |
(2)bn=nan=
| n |
| 2n-1 |
数列{bn}的前n项和Sn=(
| 1 |
| 20 |
| 2 |
| 21 |
| 3 |
| 22 |
| n |
| 2n-1 |
| 1 |
| 20 |
| 2 |
| 21 |
| 3 |
| 22 |
| n |
| 2n-1 |
令Tn=(
| 1 |
| 20 |
| 2 |
| 21 |
| 3 |
| 22 |
| n |
| 2n-1 |
则
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| n |
| 2n |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2n |
1-
| ||
1-
|
| n |
| 2n |
| 1 |
| 2n |
| n |
| 2n |
即Tn=4(1-
| 1 |
| 2n |
| n |
| 2n |
| n+2 |
| 2n-1 |
故Sn=Tn+n2+n=4-
| n+2 |
| 2n-1 |
点评:本题主要考查等比数列的判断以及数列求和,利用错位相减法是解决本题的关键.综合性较强,有一定的难度.
练习册系列答案
相关题目