题目内容
【题目】某同学在上学路上要经过
、
、
三个带有红绿灯的路口.已知他在
、
、
三个路口遇到红灯的概率依次是
、
、
,遇到红灯时停留的时间依次是
秒、
秒、
秒,且在各路口是否遇到红灯是相互独立的.
(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,
(2)求这名同学在上学路上因遇到红灯停留的总时间.
【答案】(1)
(2)![]()
【解析】试题分析:(1)先确定事件:“这名同学在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,再根据概率乘法求概率(2)即求数学期望:先确定随机变量取法,再分别求对应概率,最后根据数学期望公式求期望
试题解析:(1)设这名同学在上学路上到第三个路口时首次遇到红灯为事件
,
因为事件
等于事件“这名同学在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯” ,
所以事件
的概率为
.
(2)记“这名同学在上学路上因遇到红灯停留的总时间”为
,
由题意,可得
可能取的值为0,40,20,80,60,100,120,140(单位:秒).
∴即
的分布列是:
;
;
;
;
;
;
; ![]()
所以
.
答:这名同学在上学路上因遇到红灯停留的总时间为
.
练习册系列答案
相关题目