题目内容
已知f(x)=
,则f(-
)的值为 .
|
| 5 |
| 6 |
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(-
)=f(
)+1=sin
π+1=
.
| 5 |
| 6 |
| 5 |
| 6 |
| 5 |
| 6 |
| 3 |
| 2 |
解答:
解:∵f(x)=
,
∴f(-
)=f(
)+1,
=sin
π+1
=
.
故答案为:
.
|
∴f(-
| 5 |
| 6 |
| 5 |
| 6 |
=sin
| 5 |
| 6 |
=
| 3 |
| 2 |
故答案为:
| 3 |
| 2 |
点评:本题考查函数值的求法,是基础题,解题时要注意分段函数的性质的合理运用.
练习册系列答案
相关题目
一元二次方程x2-x+1=0根的情况是( )
| A、有两个相等的实根 |
| B、有两个不相等的实根 |
| C、没有实根 |
| D、无法判断 |
1,3,5,7,9,…的通项公式an是( )
| A、2n |
| B、2n+1 |
| C、2n-1 |
| D、2n-1 |
若直线l1的方向向量与l2的方向向量的夹角是150°,则l1与l2这两条异面直线所成的角为( )
| A、30° | B、150° |
| C、30°或150° | D、以上均错 |