题目内容
5.某大学的8名同学准备拼车去旅游,其中一、二、三、四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中一年级的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰后2名同学是来自同一年级的乘坐方式共有( )| A. | 24种 | B. | 18种 | C. | 48种 | D. | 36种 |
分析 分类讨论,第一类,一年级的孪生姐妹在甲车上;第二类,一年级的孪生姐妹不在甲车上,再利用组合知识,问题得以解决.
解答 解:由题意,第一类,一年级的孪生姐妹在甲车上,甲车上剩下两个要来自不同的年级,从三个年级中选两个为C32=3,然后分别从选择的年级中再选择一个学生为C21C21=4,故有3×4=12种.
第二类,一年级的孪生姐妹不在甲车上,则从剩下的3个年级中选择一个年级的两名同学在甲车上,为C31=3,然后再从剩下的两个年级中分别选择一人为C21C21=4,这时共有3×4=12种
根据分类计数原理得,共有12+12=24种不同的乘车方式,
故选:A.
点评 本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
15.在△ABC中,已知点D在BC上,且CD=2BD,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=( )
| A. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$ | B. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$ | C. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | D. | -$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$ |
20.执行如图所示的程序框图,则输出的结果s是( )

| A. | 15 | B. | 105 | C. | 126 | D. | 945 |
10.已知{an},{bn}都是各项为正数的数列,对于任意n∈N*,都有an,bn2,an+1成等差数列,bn2,an+1,bn+12成等比数列,若a1=1,b1=$\sqrt{2}$,则以下正确的是( )
| A. | {an}是等差数列 | B. | {bn}是等比数列 | C. | $\frac{{a}_{n}}{{b}_{n}}$=$\frac{\sqrt{2}}{2}$n | D. | anbn=$\frac{\sqrt{2}}{8}$n2(n+7) |