题目内容
15.已知α,β为锐角,sinα=$\frac{\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{10}}{10}$,则α+2β=$\frac{π}{4}$.分析 由题意和同角三角函数基本关系可得cosα和cosβ,进而由二倍角公式可得sin2β和cos2β,可得cos(α+2β)的值,缩小角的范围可得.
解答 解:∵α,β为锐角,sinα=$\frac{\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{10}}{10}$,
∴cosα=$\frac{7\sqrt{2}}{10}$,cosβ=$\frac{3\sqrt{10}}{10}$,
∴sin2β=2sinβcosβ=$\frac{3}{5}$,cos2β=cos2β-sin2β=$\frac{4}{5}$,
∴cos(α+2β)=$\frac{7\sqrt{2}}{10}×\frac{4}{5}-\frac{\sqrt{2}}{10}×\frac{3}{5}$=$\frac{\sqrt{2}}{2}$
又sinα=$\frac{\sqrt{2}}{10}$<$\frac{1}{2}$,sinβ=$\frac{\sqrt{10}}{10}$<$\frac{1}{2}$,
∴0<α<$\frac{π}{6}$且0<β<$\frac{π}{6}$,
∴0<α+2β<$\frac{π}{2}$,∴α+2β=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.
点评 本题考查两角和与差的三角函数公式,涉及知值求角问题和二倍角公式,缩小角的范围是解决问题的关键,属中档题.
练习册系列答案
相关题目
3.下列函数中,对于任意x∈R,同时满足条件f(x)=f(-x)和f(x+π)=f(x)的函数是( )
| A. | f(x)=sinx | B. | f(x)=sin2x | C. | f(x)=cosx | D. | f(x)=cos2x |
10.已知sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{3}$,则sin2α的值为( )
| A. | $\frac{7}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{1}{3}$ | D. | -$\frac{5}{9}$ |
4.设f(x)是定义在R上的函数,则“函数f(x)为偶函数”是“函数xf(x)为奇函数”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |