题目内容
3.已知向量$\overrightarrow{a}$=(k,cos$\frac{π}{3}$),向量$\overrightarrow{b}$=(sin$\frac{π}{6}$,tan$\frac{π}{4}$),若$\overrightarrow{a}∥\overrightarrow{b}$,则实数k的值为( )| A. | $-\frac{1}{4}$ | B. | -1 | C. | $\frac{1}{4}$ | D. | 1 |
分析 利用向量平行的性质直接求解.
解答 解:∵向量$\overrightarrow{a}$=(k,cos$\frac{π}{3}$),向量$\overrightarrow{b}$=(sin$\frac{π}{6}$,tan$\frac{π}{4}$),$\overrightarrow{a}∥\overrightarrow{b}$,
∴$\frac{k}{sin\frac{π}{6}}$=$\frac{cos\frac{π}{3}}{tan\frac{π}{4}}$,
解得实数k=$\frac{1}{4}$.
故选:C.
点评 本题考查实数值的求法,考查平面向量平行、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
13.设焦点在x轴上的双曲线虚轴长为2,焦距为$2\sqrt{3}$,则双曲线的渐近线方程为( )
| A. | $y=±\sqrt{2}x$ | B. | y=±2x | C. | $y=±\frac{{\sqrt{2}}}{2}x$ | D. | $y=±\frac{1}{2}x$ |
14.f(n)=$\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}$+…$\frac{1}{n^2}$则( )
| A. | f(n)中有n项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$ | B. | f(n)中有n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | ||
| C. | f(n)中有n2+n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | D. | f(n)中有n2-n+1项,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ |
11.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在射线y=$\frac{1}{2}$x(x>0)上,则sin2θ=( )
| A. | $\frac{2}{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
18.要从1 000个球中抽取100个进行抽样分析,其中红球共有50个,如果用分层抽样的方法对球进行抽样,则应抽取红球( )
| A. | 33个 | B. | 20个 | C. | 5个 | D. | 10个 |
15.设A、B分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,P是双曲线C上异于A、B的任一点,设直线AP,BP的斜率分别为m,n,则$\frac{2a}{b}+ln|m|+ln|n|$取得最小值时,双曲线C的离心率为( )
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{6}$ |
12.若f(x)=cos(2x+$\frac{π}{3}$),则f'($\frac{π}{12}$)的值为( )
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |