ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖª$\overrightarrow{OP}$=£¨2£¬1£©£¬$\overrightarrow{OA}$=£¨1£¬7£©£¬$\overrightarrow{OB}$=£¨5£¬1£©£®ÉèMÊÇÖ±ÏßOPÉϵÄÒ»µã£¨ÆäÖÐOÎª×ø±êԵ㣩£¬µ±$\overrightarrow{MA}$•$\overrightarrow{MB}$È¡×îСֵʱ£º£¨1£©Çó$\overrightarrow{OM}$£»
£¨2£©Éè¡ÏAMB=¦È£¬Çócos¦ÈµÄÖµ£®
·ÖÎö £¨1£©Éè$\overrightarrow{OM}$=t$\overrightarrow{OP}$£¬ÀûÓÃÏòÁ¿µÄ×ø±ê±íʾÇó³ö$\overrightarrow{OM}$¡¢$\overrightarrow{MA}$ºÍ$\overrightarrow{MB}$£¬¼ÆËã$\overrightarrow{MA}•\overrightarrow{MB}$È¡µÃ×îСֵʱtµÄÖµ¼´¿É£»
£¨2£©ÓÉÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÇó¼Ð½ÇµÄÓàÏÒÖµ¼´¿É£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬Éè$\overrightarrow{OM}$=t$\overrightarrow{OP}$£¬t¡ÊR£¬---£¨2·Ö£©
Ôò$\overrightarrow{OM}$=£¨2t£¬t£©£¬
$\overrightarrow{MA}$=£¨1-2t£¬7-t£©£¬
$\overrightarrow{MB}$=£¨5-2t£¬1-t£©£»
¡à$\overrightarrow{MA}•\overrightarrow{MB}$=5t2-20t+12=5£¨t-2£©2-8£¬---£¨4·Ö£©
¡àµ±t=2ʱ£¬$\overrightarrow{MA}•\overrightarrow{MB}$×îС£¬Õâʱ$\overrightarrow{OM}$=£¨4£¬2£©£»---£¨6·Ö£©
£¨2£©ÓÉ$\overrightarrow{MA}$=£¨-3£¬5£©£¬$\overrightarrow{MB}$=£¨1£¬-1£©£¬---£¨8·Ö£©
¡àcos¦È=$\frac{\overrightarrow{MA}•\overrightarrow{MB}}{|\overrightarrow{MA}|¡Á|\overrightarrow{MB}|}$=$\frac{-3¡Á1+5¡Á£¨-1£©}{\sqrt{{£¨-3£©}^{2}{+5}^{2}}¡Á\sqrt{{1}^{2}{+£¨-1£©}^{2}}}$=-$\frac{4\sqrt{17}}{17}$£¬
¡àcos¦ÈµÄÖµÊÇ$-\frac{{4\sqrt{17}}}{17}$£®---£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÓëÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÏòÁ¿¹²ÏßµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | {-1} | B£® | {1} | C£® | {-1£¬1£¬5} | D£® | ∅ |
| A£® | $\frac{¦Ð}{6}$ | B£® | -$\frac{¦Ð}{3}$ | C£® | -$\frac{2¦Ð}{3}$ | D£® | $\frac{5¦Ð}{6}$ |
| A£® | P£¨n£©¶Ôn¡ÊN*³ÉÁ¢ | B£® | P£¨n£©¶Ôn£¾4ÇÒn¡ÊN*³ÉÁ¢ | ||
| C£® | P£¨n£©¶Ôn=5³ÉÁ¢ | D£® | P£¨n£©¶Ôn=3²»³ÉÁ¢ |
| A£® | {x|-1¡Üx£¼1} | B£® | {x|1£¼x¡Ü3} | C£® | {x|x¡Ý3} | D£® | ∅ |
| A£® | 1 | B£® | $\sqrt{3}$ | C£® | 2 | D£® | $\sqrt{5}$ |