题目内容
【题目】已知圆
经过两点
,
,且圆心
在直线
:
上.
(1)求圆
的方程;
(2)设圆
与
轴相交于
、
两点,点
为圆
上不同于
、
的任意一点,直线
、
交
轴于
、
点.当点
变化时,以
为直径的圆
是否经过圆
内一定点?请证明你的结论.
【答案】(1)
;(2)当点
变化时,以
为直径的圆
经过定点
.证明见解析
【解析】
(1)设圆圆心为
,由
求得
的值,可得圆心坐标和半径,从而求得圆的标准方程;
(2)设
(
),由条件求得
,
的坐标,可得圆
的方程,再根据定点在
轴上,求出定点的坐标。
(1)设圆圆心为
,
由
得,
,
解得
,∴
,
半径为
,
所以圆
:![]()
(2)设
(
),则
.
又
,
,
所以
:
,
,
:
,
.
圆
的方程为
.
化简得
,
由动点
关于
轴的对称性可知,定点必在
轴上,
令
,得
.又点
在圆
内,
所以当点
变化时,以
为直径的圆
经过定点
.
练习册系列答案
相关题目
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校300名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟).
平均每天锻炼的时间/分钟 |
|
|
|
|
|
|
总人数 | 34 | 51 | 59 | 66 | 65 | 25 |
将学生日均体育锻炼时间在
的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的
列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 40 | 160 | |
合计 |
(2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为“锻炼达标”与性别有关?
参考公式:
,其中
.
临界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |