ÌâÄ¿ÄÚÈÝ

1£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=-an-${£¨\frac{1}{2}£©}^{n-1}$+2£¨n¡ÊN*£©£®ÊýÁÐ{bn}Âú×ãbn=2nan£®
£¨1£©ÇóÖ¤ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éècn=log2$\frac{n}{{a}_{n}}$£¬ÊýÁÐ{$\frac{1}{{c}_{n}{c}_{n+1}}$}µÄǰnÏîºÍΪTn£®Èô²»µÈʽ¦Ë¡ÜTn¶ÔÈÎÓúµÄn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÊýÁÐ{an}µÄǰnÏîºÍSn=-an-${£¨\frac{1}{2}£©}^{n-1}$+2£¨n¡ÊN*£©£®¿ÉµÃ£ºa1=S1=-a1-1+2£¬½âµÃa1£®µ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬»¯Îª£ºan=$\frac{1}{2}{a}_{{n}_{-1}}$+$£¨\frac{1}{2}£©^{n}$£®Ö»ÒªÖ¤Ã÷£ºbn+1-bn=³£Êý¼´¿É£®
£¨2£©cn=log2$\frac{n}{{a}_{n}}$=n£¬¿ÉµÃ£º$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{n£¨n+1£©}$=$\frac{1}{n}-\frac{1}{n+1}$£®ÀûÓá°ÁÑÏîÇóºÍ¡±ÓëÊýÁеĵ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð £¨1£©Ö¤Ã÷£º¡ßÊýÁÐ{an}µÄǰnÏîºÍSn=-an-${£¨\frac{1}{2}£©}^{n-1}$+2£¨n¡ÊN*£©£®
¡àa1=S1=-a1-1+2£¬½âµÃa1=$\frac{1}{2}$£®
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=-an-${£¨\frac{1}{2}£©}^{n-1}$+2-$[-{a}_{n-1}-£¨\frac{1}{2}£©^{n-2}+2]$£¬
»¯Îª£ºan=$\frac{1}{2}{a}_{{n}_{-1}}$+$£¨\frac{1}{2}£©^{n}$£®
¡àbn+1-bn=2n+1an+1-2nan=${2}^{n+1}[\frac{1}{2}{a}_{n}+£¨\frac{1}{2}£©^{n+1}]$-2nan=1£¬
¡àÊýÁÐ{bn}ÊǵȲîÊýÁУ¬Ê×Ïîb1=2a1=1£¬¹«²îΪ1£®
¡àbn=1+£¨n-1£©=n£®
¡àan=$\frac{n}{{2}^{n}}$£®
£¨2£©½â£ºcn=log2$\frac{n}{{a}_{n}}$=n£¬
¡à$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{n£¨n+1£©}$=$\frac{1}{n}-\frac{1}{n+1}$£®
¡àÊýÁÐ{$\frac{1}{{c}_{n}{c}_{n+1}}$}µÄǰnÏîºÍΪTn=$£¨1-\frac{1}{2}£©+£¨\frac{1}{2}-\frac{1}{3}£©$+¡­+$£¨\frac{1}{n}-\frac{1}{n+1}£©$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$£®
²»µÈʽ¦Ë¡ÜTn»¯Îª£º¦Ë¡Ü1-$\frac{1}{n+1}$£¬
¡ß²»µÈʽ¦Ë¡ÜTn¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬
¡à$¦Ë¡Ü\frac{1}{2}$£®
¡àʵÊý¦ËµÄ×î´óÖµÊÇ$\frac{1}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽ¡¢¡°ÁÑÏîÇóºÍ¡±·½·¨¡¢ÊýÁеĵ¥µ÷ÐÔÓë²»µÈʽµÄÐÔÖÊ¡¢¶ÔÊýµÄÔËËãÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø