题目内容

在△ABC中,角A,B,C的对边分别为a,b,c,
CA
CB
=c2-(a-b)2,求cosC的值.
考点:余弦定理
专题:解三角形
分析:利用向量数量积运算可得:
CA
CB
=bacosC,再利用余弦定理即可得出.
解答: 解:∵
CA
CB
=bacosC,
CA
CB
=c2-(a-b)2
∴bacosC=c2-a2-b2+2ab,
∴cosC=
a2+b2-c2
2ab
=
2ab-abcosC
2ab

解得cosC=
2
3
点评:本题考查了向量数量积运算性质、余弦定理,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网