题目内容

10.侧棱与底面垂直的三棱柱A1B1C1-ABC的所有棱长均为2,则三棱锥B-AB1C1的体积为$\frac{2\sqrt{3}}{3}$.

分析 先求出${S}_{△{A}_{1}{B}_{1}{C}_{1}}$,AA1=2,由此能求出三棱锥B-AB1C1的体积.

解答 解:∵侧棱与底面垂直的三棱柱A1B1C1-ABC的所有棱长均为2,
∴${S}_{△{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{2}×2×2×sin60°$=$\sqrt{3}$,AA1=2,
∴三棱锥B-AB1C1的体积为:
V=$\frac{1}{3}×{S}_{△{A}_{1}{B}_{1}{C}_{1}}×A{A}_{1}$=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题考查三棱锥的体积的求不地,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网