题目内容

(2009•普陀区二模)园丁要用红、黄、蓝、白四种不同颜色的鲜花布置如图所示圆形花坛的四块区域.要求同一区域内须用同一种颜色的鲜花,相邻区域须用不同颜色的鲜花.设花圃中布置红色鲜花的区域数量为ξ,则随机变量ξ的数学期望Eξ
1
1
分析:花圃中红色鲜花区域的块数可能为0,1,2.求出相应的概率即可求得分布列及期望.
解答:解:随机变量ξ的取值分别为0,1,2.
则当ξ=0时,用黄、蓝、白三种颜色来涂色,
若左右为同色时,共有3×2×1=6种;
即ξ=0所包含的基本事件有6种,
所以P(ξ=0)=
6
48
=
1
8

P(ξ=2)=
6
48
=
1
8

所以P(ξ=1)=1-
1
8
-
1
8
=
3
4

∴E(ξ)=0×
1
8
+1×
3
4
+2×
1
8
=1.
故答案为:1
点评:此题比较难,主要考查学生分析问题的能力,对学生的要求较高,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网