题目内容
(2009•普陀区二模)若n∈N*,(1+
)n=
an+bn(an、bn∈Z).
(1)求a5+b5的值;
(2)求证:数列{bn}各项均为奇数.
| 2 |
| 2 |
(1)求a5+b5的值;
(2)求证:数列{bn}各项均为奇数.
分析:(1)令n=5,利用二项式定理展开,然后化简整理可求出a5与b5的值,从而求出所求;
(2)利用数学归纳法证明,先奠基,然后假设假设当n=k时,然后证明当n=k+1时也成立即可.
(2)利用数学归纳法证明,先奠基,然后假设假设当n=k时,然后证明当n=k+1时也成立即可.
解答:解:(1)当n=5时,(1+
)5=
+
+
(
)2+…+
(
)5
=[
+
(
)2+
(
)4]+[
+
(
)3+
(
)5]
=41+29
故a5=29,b5=41所以a5+b5=70
(2)证明:由数学归纳法
(i)当n=1时,易知b1=1,为奇数;
(ii)假设当n=k时,(1+
)k=
ak+bk,其中bk为奇数;
则当n=k+1时,(1+
)k+1=(1+
)k(1+
) =(
ak+bk)(1+
)
=
(ak+bk)+(bk+2ak)
∴bk+1=bk+2ak,又ak、bk∈Z,所以2ak是偶数,
由归纳假设知bk是奇数,故bk+1也是奇数
综(i)(ii)可知数列{bn}各项均为奇数.
| 2 |
| C | 0 5 |
| C | 1 5 |
| 2 |
| C | 2 5 |
| 2 |
| C | 5 5 |
| 2 |
=[
| C | 0 5 |
| C | 2 5 |
| 2 |
| C | 4 5 |
| 2 |
| C | 1 5 |
| 2 |
| C | 2 5 |
| 2 |
| C | 5 5 |
| 2 |
=41+29
| 2 |
故a5=29,b5=41所以a5+b5=70
(2)证明:由数学归纳法
(i)当n=1时,易知b1=1,为奇数;
(ii)假设当n=k时,(1+
| 2 |
| 2 |
则当n=k+1时,(1+
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
=
| 2 |
∴bk+1=bk+2ak,又ak、bk∈Z,所以2ak是偶数,
由归纳假设知bk是奇数,故bk+1也是奇数
综(i)(ii)可知数列{bn}各项均为奇数.
点评:本题主要考查了二项式定理的应用,以及利用数学归纳法证明有关问题,属于中档题.
练习册系列答案
相关题目