题目内容
17.已知△ABC三边a,b,c上的高分别为$\frac{1}{2},\frac{{\sqrt{2}}}{2},1$,则cosA=$-\frac{{\sqrt{2}}}{4}$.分析 由题意和三角形的面积公式列出方程,化简后得到a、b、c的关系,由余弦定理求出cosA的值.
解答 解:∵△ABC三边a,b,c上的高分别为$\frac{1}{2},\frac{{\sqrt{2}}}{2},1$,
∴$\frac{1}{2}×\frac{1}{2}×a=\frac{1}{2}×\frac{\sqrt{2}}{2}×b=\frac{1}{2}×1×c$,
则$a=\sqrt{2}b=2c$,即c=$\frac{1}{2}$a,b=$\frac{\sqrt{2}}{2}$a,
由余弦定理得,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$
=$\frac{\frac{1}{2}{a}^{2}+\frac{1}{4}{a}^{2}-{a}^{2}}{2×\frac{\sqrt{2}}{2}a×\frac{1}{2}a}$=$-\frac{{\sqrt{2}}}{4}$,
故答案为:$-\frac{{\sqrt{2}}}{4}$.
点评 本题考查余弦定理,以及三角形的面积公式的应用,考查化简、变形能力.
练习册系列答案
相关题目
12.已知命题p:“?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$是奇函数”,则命题?p为( )
| A. | ?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$是偶函数 | B. | ?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$是奇函数 | ||
| C. | ?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$不是奇函数 | D. | ?m∈R,函数f(x)=m+$\frac{1}{{{2^x}+1}}$不是奇函数 |
9.
如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在x轴上,记△BCF的面积为S1,△ACF的面积为S2,则$\frac{{S}_{1}^{2}}{{S}_{2}^{2}}$等于是( )
| A. | $\frac{{|{BF}|-1}}{{|{AF}|-1}}$ | B. | $\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$ | C. | $\frac{{|{BF}|+1}}{{|{AF}|+1}}$ | D. | $\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$ |
6.已知实数a满足下列两个条件:
①关于x的方程ax2+3x+1=0有解;
②代数式log2(a+3)有意义.
则使得指数函数y=(3a-2)x为减函数的概率为( )
①关于x的方程ax2+3x+1=0有解;
②代数式log2(a+3)有意义.
则使得指数函数y=(3a-2)x为减函数的概率为( )
| A. | $\frac{4}{63}$ | B. | $\frac{1}{16}$ | C. | $\frac{3}{63}$ | D. | $\frac{3}{16}$ |
7.过抛物线x2=4y的焦点且与其对称轴垂直的弦AB的长度是( )
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |