题目内容
8.画底面边长为2cm、高为3cm的正四棱柱ABCD-A1B1C1D1的直观图.分析 根据斜二侧画法作图.
解答 解(1)建立空间直角坐标系B1-xyz;
(2)在x轴上作线段B1C1=2cm,在y轴上作线段B1A1=1cm;
(3)过C1作y轴的平行线,过A1作x轴的平行线,使得两条平行线交于D1点;
(4)分别过A1,B1,C1,D1作z轴的平行线,使得A1A=B1B=C1C=D1D=3cm.
(5)连结AB,BC,CD,AD,则ABCD-A1B1C1D1就是要做的直观图.![]()
点评 本题考查了空间图形的直观图的作法,属于基础题.
练习册系列答案
相关题目
20.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.
(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数$\overline{x}$,δ2近似为样本方差s2,求P(3.8<X<13.4)
附:①回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,δ2),则P(μ-δ<X<μ+δ)=0.6826,P(μ-2δ<X<μ+2δ)=0.9544.
| x | 2 | 5 | 8 | 9 | 11 |
| y | 12 | 10 | 8 | 8 | 7 |
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.
(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数$\overline{x}$,δ2近似为样本方差s2,求P(3.8<X<13.4)
附:①回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,δ2),则P(μ-δ<X<μ+δ)=0.6826,P(μ-2δ<X<μ+2δ)=0.9544.