题目内容

1.已知函数f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$先画出函数图,求在[0,4]上的定积分.

分析 分段作出函数f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$的图象,${∫}_{0}^{4}$f(x)dx=${∫}_{0}^{\frac{π}{2}}$sinxdx+${∫}_{\frac{π}{2}}^{2}$dx+${∫}_{2}^{4}$(x-1)dx,从而分别求出即可.

解答 解:作函数f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$的图象如下,

故${∫}_{0}^{4}$f(x)dx
=${∫}_{0}^{\frac{π}{2}}$sinxdx+${∫}_{\frac{π}{2}}^{2}$dx+${∫}_{2}^{4}$(x-1)dx
=-cosx$|\left.\begin{array}{l}{\frac{π}{2}}\\{0}\end{array}\right.$+(2-$\frac{π}{2}$)+($\frac{1}{2}$x2-x)$|\left.\begin{array}{l}{4}\\{2}\end{array}\right.$
=-cos$\frac{π}{2}$+cos0+(2-$\frac{π}{2}$)+$\frac{1}{2}×{4}^{2}$-4-($\frac{1}{2}×{2}^{2}$-2)
=1+2-$\frac{π}{2}$+8-4-(2-2)
=7-$\frac{π}{2}$.

点评 本题考查了学生的作图能力及分段函数的应用,同时考查了定积分的求法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网