题目内容
1.已知函数f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$先画出函数图,求在[0,4]上的定积分.分析 分段作出函数f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$的图象,${∫}_{0}^{4}$f(x)dx=${∫}_{0}^{\frac{π}{2}}$sinxdx+${∫}_{\frac{π}{2}}^{2}$dx+${∫}_{2}^{4}$(x-1)dx,从而分别求出即可.
解答 解:作函数f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$的图象如下,
,
故${∫}_{0}^{4}$f(x)dx
=${∫}_{0}^{\frac{π}{2}}$sinxdx+${∫}_{\frac{π}{2}}^{2}$dx+${∫}_{2}^{4}$(x-1)dx
=-cosx$|\left.\begin{array}{l}{\frac{π}{2}}\\{0}\end{array}\right.$+(2-$\frac{π}{2}$)+($\frac{1}{2}$x2-x)$|\left.\begin{array}{l}{4}\\{2}\end{array}\right.$
=-cos$\frac{π}{2}$+cos0+(2-$\frac{π}{2}$)+$\frac{1}{2}×{4}^{2}$-4-($\frac{1}{2}×{2}^{2}$-2)
=1+2-$\frac{π}{2}$+8-4-(2-2)
=7-$\frac{π}{2}$.
点评 本题考查了学生的作图能力及分段函数的应用,同时考查了定积分的求法.
| A. | $\frac{(x+1)cosx-sinx}{{(x+1)}^{2}}$ | B. | $\frac{(x+1)sinx-cosx}{x+1}$ | ||
| C. | $\frac{(x+1)sinx-cosx}{{(x+1)}^{2}}$ | D. | $\frac{(x+1)sinx+cosx}{x+1}$ |
| A. | 5 | B. | -5 | C. | 10 | D. | -10 |
| A. | $y=\frac{{\sqrt{x}}}{2}$ | B. | y=(x-1)2 | C. | y=2-x | D. | y=log0.5x |