题目内容
4.已知a,b∈(0,+∞),求证:${({{a^3}+{b^3}})^{\frac{1}{3}}}<{({{a^2}+{b^2}})^{\frac{1}{2}}}$.分析 利用分析法证明,即可得出结论.
解答 证明:要证明:${({{a^3}+{b^3}})^{\frac{1}{3}}}<{({{a^2}+{b^2}})^{\frac{1}{2}}}$,
只需要证明:(a3+b3)2<(a2+b2)3.
只需要证明:a6+b6+2a3b3<a6+b6+3a4b2+3a2b4,
只需要证明:2ab<3a2+3b2,
只需要证明:3(a-$\frac{1}{3}$b)2+$\frac{8}{3}$b2>0,
∵a>0,b>0,
∴3(a-$\frac{1}{3}$b)2+$\frac{8}{3}$b2>0.
∴原不等式成立.
点评 本题主要考查用分析法证明不等式,把证明不等式转化为寻找使不等式成立的充分条件,直到使不等式成立的充分条件显然已经具备为止.
练习册系列答案
相关题目
14.已知函数f(x)=|x+1|-2|x-1|,则不等式f(x)>1的解集为( )
| A. | ($\frac{2}{3}$,2) | B. | ($\frac{1}{3}$,2) | C. | ($\frac{2}{3}$,3) | D. | ($\frac{1}{3}$,3) |
16.张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:
(Ⅰ)求身高y关于年龄x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{1}-\overline{x})({y}_{1}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\overline{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 年龄 (岁) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 身高 (cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{1}-\overline{x})({y}_{1}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\overline{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.