题目内容
15.已知x∈R,平面向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,x),$\overrightarrow{c}$=(2,-4),若$\overrightarrow{b}$∥$\overrightarrow{c}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|( )| A. | 2$\sqrt{5}$ | B. | $\sqrt{10}$ | C. | 4 | D. | 10 |
分析 由$\overrightarrow{b}$∥$\overrightarrow{c}$,求出x=2,利用平面向量坐标运算法则求出$\overrightarrow{a}+\overrightarrow{b}$,由此能求出|$\overrightarrow{a}$+$\overrightarrow{b}$|.
解答 解:∵x∈R,平面向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,x),$\overrightarrow{c}$=(2,-4),$\overrightarrow{b}$∥$\overrightarrow{c}$,
∴$\frac{-1}{2}=\frac{x}{-4}$,解得x=2,
∴$\overrightarrow{b}$=(-1,2),
∴$\overrightarrow{a}+\overrightarrow{b}$=(1,3),
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{1+9}$=$\sqrt{10}$.
故选:B.
点评 本题考查向量的模的求法,考查向量平行,平面向量坐标运算法则等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
6.设a=lg5,b=log2$\sqrt{2}$,c=ln3,则( )
| A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
3.
如图,已知四边形ABCD是梯形,E,F分别是腰的中点,M,N是线段EF上的两个点,且EM=MN=NF,下底是上底的2倍,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b$,则$\overrightarrow{DN}$=( )
| A. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$ | B. | $\frac{1}{4}\overrightarrow a+\frac{1}{2}\overrightarrow b$ | C. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$ | D. | $\frac{1}{4}\overrightarrow a-\frac{1}{2}\overrightarrow b$ |
20.共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$称为相应于点(xi,yi)的残差(也叫随机误差);
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入8.4元;投放1万辆时,该公司平均一辆单车一天能收入7.6元.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).
| 租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 |
| 每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$称为相应于点(xi,yi)的残差(也叫随机误差);
| 租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 | |
| 每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
| 模型甲 | 估计值$\stackrel{∧}{{y}_{i}}$(1) | 2.4 | 2.1 | 1.6 | ||
| 残差$\stackrel{∧}{{e}_{i}}$(1) | 0 | -0.1 | 0.1 | |||
| 模型乙 | 估计值$\stackrel{∧}{{y}_{i}}$ (2) | 2.3 | 2 | 1.9 | ||
| 残差$\stackrel{∧}{{e}_{i}}$(2) | 0.1 | 0 | 0 | |||
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入8.4元;投放1万辆时,该公司平均一辆单车一天能收入7.6元.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).
19.到两坐标轴的距离相等的轨迹方程是( )
| A. | y=x | B. | y=|x| | C. | x2+y2=0 | D. | y2=x2 |