题目内容

1.已知数列{an}、{bn}满足${b_n}={log_2}{a_n},n∈{N^*}$,其中{bn}是等差数列,且a9a2009=4,则b1+b2+b3+…+b2017=2017.

分析 推导出b1+b2017=b9+b2009=log2a9+log2a2009=log2(a9•a2009)=log24=2,由此能求出b1+b2+b3+…+b2017的值.

解答 解:∵数列{an}、{bn}满足${b_n}={log_2}{a_n},n∈{N^*}$,其中{bn}是等差数列,且a9a2009=4,
∴b1+b2017=b9+b2009=log2a9+log2a2009
=log2(a9•a2009)=log24=2,
∴b1+b2+b3+…+b2017=(b1+b2017)+(b2+b2016)+…+(b1008+b1010)+b1009
=2×1008+1=2017.
故答案为:2017.

点评 本题考查等差数列的前2017项和的求法,考查等差数列对数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网