ÌâÄ¿ÄÚÈÝ
13£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È£¬½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®£¨1£©·Ö±ðд³öÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÒÑÖªM£¬N·Ö±ðÊÇÇúÏßC1µÄÉÏ¡¢Ï¶¥µã£¬µãPΪÇúÏßC2ÉÏÈÎÒâÒ»µã£¬Çó|PM|+|PN|µÄ×î´óÖµ£®
·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬·Ö±ðд³öÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèP£¨2cos¦Á£¬2sin¦Á£©£¬Ôò|PM|+|PN|=$\sqrt{7-4\sqrt{3}sin¦Á}$+$\sqrt{7+4\sqrt{3}sin¦Á}$£¬Á½±ßƽ·½£¬¼´¿ÉÇó|PM|+|PN|µÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬Ö±½Ç×ø±ê·½³ÌΪx2+y2=4£»
£¨2£©ÉèP£¨2cos¦Á£¬2sin¦Á£©£¬Ôò|PM|+|PN|=$\sqrt{7-4\sqrt{3}sin¦Á}$+$\sqrt{7+4\sqrt{3}sin¦Á}$£¬
¡à£¨|PM|+|PN|£©2=14+2$\sqrt{49-48si{n}^{2}¦Á}$£¬
¡àsin¦Á=0ʱ£¬|PM|+|PN|µÄ×î´óֵΪ2$\sqrt{7}$£®
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa3=3£¬an+1=an+1£¬Ç°nÏîµÄºÍSn=55ÔònΪ£¨¡¡¡¡£©
| A£® | 8 | B£® | 9 | C£® | 10 | D£® | 11 |
8£®ÒÑ֪ȫ¼¯U={0£¬1£¬2£¬3£¬4}£¬¼¯ºÏM={1£¬2£¬3}£¬N={0£¬3£¬4}£¬Ôò£¨∁UM£©¡ÉN£¨¡¡¡¡£©
| A£® | {0£¬4} | B£® | {3£¬4} | C£® | {1£¬2} | D£® | ∅ |