ÌâÄ¿ÄÚÈÝ

13£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È£¬½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®
£¨1£©·Ö±ðд³öÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÒÑÖªM£¬N·Ö±ðÊÇÇúÏßC1µÄÉÏ¡¢Ï¶¥µã£¬µãPΪÇúÏßC2ÉÏÈÎÒâÒ»µã£¬Çó|PM|+|PN|µÄ×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬·Ö±ðд³öÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèP£¨2cos¦Á£¬2sin¦Á£©£¬Ôò|PM|+|PN|=$\sqrt{7-4\sqrt{3}sin¦Á}$+$\sqrt{7+4\sqrt{3}sin¦Á}$£¬Á½±ßƽ·½£¬¼´¿ÉÇó|PM|+|PN|µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬Ö±½Ç×ø±ê·½³ÌΪx2+y2=4£»
£¨2£©ÉèP£¨2cos¦Á£¬2sin¦Á£©£¬Ôò|PM|+|PN|=$\sqrt{7-4\sqrt{3}sin¦Á}$+$\sqrt{7+4\sqrt{3}sin¦Á}$£¬
¡à£¨|PM|+|PN|£©2=14+2$\sqrt{49-48si{n}^{2}¦Á}$£¬
¡àsin¦Á=0ʱ£¬|PM|+|PN|µÄ×î´óֵΪ2$\sqrt{7}$£®

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø