题目内容
7.若直线y=2x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1没有公共点,则双曲线的离心率的取值范围是( )| A. | [$\sqrt{3}$,+∞) | B. | [$\sqrt{5}$,+∞) | C. | (1,$\sqrt{3}$] | D. | (1,$\sqrt{5}$] |
分析 求出双曲线的渐近线方程,由题意可得渐近线的斜率的正值不大于2,由a,b,c的关系和离心率公式,可得范围.
解答 解:双曲线的渐近线方程为y=±$\frac{b}{a}$x,
由直线y=2x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1没有公共点,
可得$\frac{b}{a}$≤2,即b≤2a,
又e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$≤$\sqrt{1+4}$=$\sqrt{5}$,
但e>1,可得1<e≤$\sqrt{5}$.
故选:D.
点评 本题考查了双曲线的渐近线和离心率,直线与双曲线相交等问题,考查运算能力,是基础题.
练习册系列答案
相关题目
18.矩形ABCD中,AD=mAB,E为BC的中点,若$\overrightarrow{AE}⊥\overrightarrow{BD}$,则m=( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
15.双曲线C:$\frac{{x}^{2}}{3}$-y2=1的左右顶点分别为A1,A2,点P在双曲线C上,且直线PA1的斜率的取值范围为[1,2],那么直线PA2的斜率的取值范围是( )
| A. | [$\frac{1}{6}$,$\frac{1}{3}$] | B. | ($\frac{1}{6}$,$\frac{1}{3}$) | C. | [-$\frac{1}{3}$,-$\frac{1}{6}$] | D. | (-$\frac{1}{3}$,-$\frac{1}{6}$) |
12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的离心率为$\sqrt{2}$,则其渐近线方程为( )
| A. | y=±$\sqrt{2}$x | B. | y=±x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\frac{1}{2}$x |
19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且$\overrightarrow{A{F}_{1}}$=4$\overrightarrow{B{F}_{1}}$,则双曲线C的离心率的值是( )
| A. | $\frac{\sqrt{3}}{2}$+1 | B. | $\frac{\sqrt{13}+1}{3}$ | C. | $\frac{\sqrt{13}}{3}$+1 | D. | $\frac{\sqrt{3}+1}{2}$ |