题目内容
【题目】已知
件次品和
件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出
件次品或者检测出
件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用
元,设
表示直到检测出
件次品或者检测出
件正品时所需要的检测费用(单位:元),求
的分布列.
【答案】(1)
;(2)见解析.
【解析】
(1)利用独立事件的概率乘法公式可计算出所求事件的概率;
(2)由题意可知随机变量
的可能取值有
、
、
,计算出随机变量
在不同取值下的概率,由此可得出随机变量
的分布列.
(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件
,则
;
(2)由题意可知,随机变量
的可能取值为
、
、
.
则
,
,
.
故
的分布列为
|
|
|
|
|
|
|
|
练习册系列答案
相关题目
【题目】我国全面二孩政策已于2016年1月1日起正式实施.国家统计局发布的数据显示,从2012年到2017年,中国的人口自然增长率变化始终不大,在5‰上下波动(如图).
![]()
为了了解年龄介于24岁至50岁之间的适孕夫妻对生育二孩的态度如何,统计部门按年龄分为9组,每组选取150对夫妻进行调查统计有生育二孩意愿的夫妻数,得到下表:
年龄区间 |
|
|
|
|
|
|
|
|
|
有意愿数 | 80 | 81 | 87 | 86 | 84 | 83 | 83 | 70 | 66 |
(1)设每个年龄区间的中间值为
,有意愿数为
,求样本数据的线性回归直线方程,并求该模型的相关系数
(结果保留两位小数);
(2)从
,
,
,
,
这五个年龄段中各选出一对夫妻(能代表该年龄段超过半数夫妻的意愿)进一步调研,再从这5对夫妻中任选2对夫妻.求其中恰有一对不愿意生育二孩的夫妻的概率.
(参考数据和公式:
,
,
,
,
,
)