题目内容

1.在平面直角坐标系中,以坐标原点O和A(5,2)为顶点作等腰直角△ABO,使∠B=90°,求点B和向量$\overrightarrow{AB}$的坐标.

分析 设B(x,y),则$\overrightarrow{OB}=(x,y),\overrightarrow{AB}=(x-5,y-2)$,由此利用$\overrightarrow{OB}⊥\overrightarrow{AB}$,$|{\overrightarrow{OB}}|=|{\overrightarrow{AB}}|$,能求出点B和向量$\overrightarrow{AB}$的坐标.

解答 (本小题满分12分)
解:如图,设B(x,y),则$\overrightarrow{OB}=(x,y),\overrightarrow{AB}=(x-5,y-2)$,…(2分)
∵$\overrightarrow{OB}⊥\overrightarrow{AB}$,∴$\overrightarrow{OB}•\overrightarrow{AB}=0$…(4分)
∴x(x-5)+y(y-2)=0,即x2+y2-5x-2y=0…(6分)
又∵$|{\overrightarrow{OB}}|=|{\overrightarrow{AB}}|$,…(8分)
∴x2+y2=(x-5)2+(y-2)2,即10x+4y=29…(10分)
由$\left\{\begin{array}{l}{x^2}+{y^2}-5x-2y=0\\ 10x+4y=29\end{array}\right.$解得$\left\{\begin{array}{l}{x_1}=\frac{7}{2}\\{y_1}=-\frac{3}{2}\end{array}\right.$或$\left\{\begin{array}{l}{x_2}=\frac{3}{2}\\{y_2}=\frac{7}{2}\end{array}\right.$
∴B点的坐标为$({\frac{7}{2},\;-\frac{3}{2}})或({\frac{3}{2},\;\frac{7}{2}})$,…(11分)
$\overrightarrow{AB}=({-\frac{3}{2},\;-\frac{7}{2}})或\overrightarrow{AB}=({-\frac{7}{2},\;\frac{3}{2}\;})$…(12分)

点评 本题考查点的坐标及向量坐标的求法,是基础题,解题时要认真审题,注意向量坐标运算法则的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网