题目内容

10.在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.
(1)若抽奖规则是从一个装有2个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;
(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.

分析 (1)计算所有事件数已经满足条件的事件数,利用古典概型公式求之;
(2)设两人到达的时间分别为9点到10点之间的x分钟、y分钟.用(x,y)表示每次试验的结果,分别,x,y范围表示满足条件的事件,利用几何概型的概率公式得到所求.

解答 解:(1)从袋中6个球中无放回的摸出2个,试验的结果共有6×5=30种,中奖的情况分为两种:
(i)2个球都是红色,包含的基本事件数为2×1=2;
(ii)2个球都是白色,包含的基本事件数为4×3=12.
所以,中奖这个事件包含的基本事件数为14.
因此,中奖概率为$\frac{7}{15}$.…(6分)
(2)设两人到达的时间分别为9点到10点之间的x分钟、y分钟.
用(x,y)表示每次试验的结果,则所有可能结果为Ω={(x,y)|0≤x≤40,20≤y≤60};
记甲比乙提前到达为事件A,则事件A的可能结果为A={(x,y)|x<y,0≤x≤40,20≤y≤60}.
如图所示,试验全部结果构成区域Ω为正方形ABCD.而事件A所构成区域是正方形内的阴影部分.
根据几何概型公式,得到P(A)=$\frac{4{0}^{2}-\frac{1}{2}×2{0}^{2}}{4{0}^{2}}$=$\frac{7}{8}$.
所以,甲比乙提前到达的概率为$\frac{7}{8}$.…(12分)

点评 本题考查了古典概型和几何概型的概率求法;关键字明确事件的表达方式,利用相关的公式解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网