题目内容
已知数列{an},若a1,a2-a1,a3-a2,a4-a3,…,an-an-1是公比为2的等比数列(a1是常数),则{an}的前n项和Sn等于 .
考点:数列的求和
专题:等差数列与等比数列
分析:依题意可得an=a1+(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=a1(2n-1),利用分组求和法即可求得{an}的前n项和Sn.
解答:
解:依题意得:a1+(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=
=a1(2n-1),
即an=a1(2n-1),
∴Sn=a1+a2+a3+a4+…+an
=a1(21+22+23+…+2n-n)
=a1[
-n]
=a1[2n+1-(n+2)].
故答案为:a1[2n+1-(n+2)].
| a1(1-2n) |
| 1-2 |
即an=a1(2n-1),
∴Sn=a1+a2+a3+a4+…+an
=a1(21+22+23+…+2n-n)
=a1[
| 2(1-2n) |
| 1-2 |
=a1[2n+1-(n+2)].
故答案为:a1[2n+1-(n+2)].
点评:本题考查数列的求和,着重考查等比数列的求和公式的应用,考查分组求和,求得an=a1(2n-1)是关键,属于中档题.
练习册系列答案
相关题目