题目内容
16.若椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$和双曲线$\frac{x^2}{9}-\frac{y^2}{7}=1$有相同的焦点F1,F2,点P是两条曲线的一个交点,则PF1•PF2的值是16.分析 根据点P为椭圆和双曲线的一个交点,结合椭圆和双曲线的第一定义求出|PF1|与|PF2|的表达式,解方程,即可求出|PF1|•|PF2|的值.
解答 解:因为椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$和双曲线$\frac{x^2}{9}-\frac{y^2}{7}=1$有相同的焦点F1,F2,
设P在双曲线的右支上,
利用椭圆以及双曲线的定义可得:|PF1|+|PF2|=2×5=10①
|PF1|-|PF2|=2×3=6②
由①②得:|PF1|=8,|PF2|=2.
∴|PF1|•|PF2|=16.
故答案为:16.
点评 本题主要考查圆锥曲线的定义、方程和性质,解决本题的关键在于根据椭圆与双曲线有共同的焦点,运用第一定义,考查运算能力,属中档题.
练习册系列答案
相关题目
1.如图1,已知正方体ABCD-A1B1C1D1的棱长为a,动点M、N、Q分别在线段AD1、B1C、C1D1上,当三棱锥Q-BMN的正视图如图所示时,三棱锥Q-BMN的侧视图的面积等于( )
| A. | $\frac{1}{4}{a}^{2}$ | B. | $\frac{3}{4}{a}^{2}$ | C. | $\frac{1}{2}{a}^{2}$ | D. | $\frac{\sqrt{3}}{2}{a}^{2}$ |
8.某几何体的三视图如图所示,则该几何体的体积为( )

| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{7}{3}$ |