题目内容
9.已知数列{an}满足a1=$\frac{1}{2}$,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{\frac{n!}{4},}&{n≥2}\end{array}\right.$.分析 通过an=a1+2a2+3a3+…+(n-1)an-1(n≥2)与an+1=a1+2a2+3a3+…+(n-1)an-1+nan作差、整理可知an+1=(n+1)an,利用累乘法计算即得结论.
解答 解:∵an=a1+2a2+3a3+…+(n-1)an-1(n≥2),
∴an+1=a1+2a2+3a3+…+(n-1)an-1+nan,
两式相减得:an+1-an=nan,即an+1=(n+1)an,
又∵a2=a1=$\frac{1}{2}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=n,$\frac{{a}_{n-1}}{{a}_{n-2}}$=n-1,…,$\frac{{a}_{3}}{{a}_{2}}$=3,$\frac{{a}_{2}}{{a}_{1}}$=1,
∴$\frac{{a}_{n}}{{a}_{1}}$=$\frac{1}{2}$n!(n≥2),
∴an=$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{\frac{n!}{4},}&{n≥2}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{\frac{n!}{4},}&{n≥2}\end{array}\right.$.
点评 本题考查数列的通项,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
19.在数列{an}中,对任意正整数n都有an+1-2an=0(an≠0),则$\frac{2{a}_{1}+{a}_{2}}{2{a}_{3}+{a}_{4}}$=( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |