题目内容

(1)如图,已知α、β是坐标平面内的任意两个角,且0≤α-β≤π,证明两角差的余弦公式:cos(α-β)=cosαcosβ+sinαsinβ;
(2)已知α∈(0,
π
2
),β∈(
π
2
,π)
,且cosβ=-
1
3
sin(α+β)=
7
9
,求2cos2α+cos2α的值.
分析:(1)设P1、P2分别为α、β终边与单位圆的交点,表示出P1、P2坐标,利用平面向量的数量积运算法则根据两点坐标表示出
OP1
OP2
,再由
OP1
OP2
的夹角为α-β,两向量模为1,利用平面向量数量积运算法则表示出
OP1
OP2
,即可得证;
(2)由β的范围求出sinβ大于0,根据cosβ的值,利用同角三角函数间的基本关系求出sinβ的值,由α与β的范围求出α+β的范围,根据sin(α+β)的值,利用同角三角函数间的基本关系求出cos(α+β)的值,由cosα=cos[(α+β)-β],利用两角和与差的余弦函数公式化简后,将各自的值代入计算求出cosα的值,所求式子第一项利用二倍角的余弦函数公式化简后,去括号合并将cosα的值代入计算即可求出值.
解答:(1)证明:设P1、P2分别为α、β终边与单位圆的交点,
∴P1(cosα,sinα),P2(cosβ,sinβ),
OP1
OP2
=cosαcosβ+sinαsinβ,
又∵
OP1
OP2
的夹角为α-β,
OP1
OP2
=|OP1|•|OP2|cos(α-β)=cos(α-β),
∴cos(α-β)=cosαcosβ+sinαsinβ;
(2)∵β∈(
π
2
,π),cosβ=-
1
3

∴sinβ=
1-cos2β
=
2
2
3

∵α∈(0,
π
2
),∴α+β∈(
π
2
2
),
∵sin(α+β)=
7
9

∴cos(α+β)=-
1-sin2(α+β)
=-
4
2
9

∴cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ=
2
2
3

则2cos2α+cos2α=2(2-cos2α1)+cos2α=5cos2α-2=
22
9
点评:此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,同角三角函数间的基本关系,以及平面向量的数量积运算,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网