题目内容
(2010•重庆一模)已知数列{an}的前n项和Sn满足Sn=2n+1,则当n≥2时,
+
+…+
=
-(
)n-1
-(
)n-1.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 4 |
| 3 |
| 1 |
| 2 |
| 4 |
| 3 |
| 1 |
| 2 |
分析:根据Sn与an的固有关系an=
,求出an,再结合数列{
}性质选择适当的方法计算.
|
| 1 |
| an |
解答:解:由Sn=2n+1 得,当n=1时,a1=S1=3,当n≥2时an=Sn-Sn-1=2 n-1∴an=
+
+…+
=
+
+
+…+
=
+
=
-(
)n-1
故答案为:
-(
)n-1
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 3 |
| ||||
1-
|
| 4 |
| 3 |
| 1 |
| 2 |
故答案为:
| 4 |
| 3 |
| 1 |
| 2 |
点评:本题考查Sn与an关系在求通项中的具体应用,等比数列的判定,等比数列求和计算.
练习册系列答案
相关题目