题目内容

11.已知函数f(x)是定义域为(0,+∞)上的减函数,且满足f(x+y)=f(x)+f(y)(x,y∈(0,+∞)),f(2)=1
(1)求f(1);
(2)求满足f(x)+f(x-3)≤2的x的取值范围.

分析 (1)通过x=y=1以及f(x+y)=f(x)+f(y)(x,y∈(0,+∞)),f(2)=1即可求解f(1)的值.
(2)利用已知条件以及函数的单调性推出不等式求解即可.

解答 解:(1)函数f(x)是定义域为(0,+∞)上的减函数,且满足f(x+y)=f(x)+f(y)(x,y∈(0,+∞)),令x=y=1可得:f(2)=2f(1),f(2)=1
∴f(1)=$\frac{1}{2}$.
(2)函数f(x)是定义域为(0,+∞)上的减函数,
f(x)+f(x-3)≤2=f(4).
可得:$\left\{\begin{array}{l}0<x\\ 0<x-3\\ 2x-3≥4\end{array}\right.$,
解得x≥$\frac{7}{2}$.满足
f(x)+f(x-3)≤2的x的取值范围:[$\frac{7}{2},+∞$).

点评 本题考查抽象函数应用,函数的定义域以及函数的单调性的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网