题目内容

(2005•杭州二模)已知
π
12
<x<
π
3
,cos(2x+
π
3
)=-
5
13
,求sin2x的值
分析:先求出
π
2
<2x+
π
3
<π
,可得sin(2x+
π
3
)=
12
13
,由sin2x=sin[(2x+
π
3
)-
π
3
]
  利用两角差的正弦公式
求出结果.
解答:解:∵
π
12
<x<
π
3
,∴
π
2
<2x+
π
3
<π
,∴sin(2x+
π
3
)=
12
13

sin2x=sin[(2x+
π
3
)-
π
3
]
=sin(2x+
π
3
)cos
π
3
-cos(2x+
π
3
)sin
π
3
 
=
12
13
1
2
-(-
5
13
)
3
2
=
12+5
3
26
点评:本题考查两角和差的正弦、余弦公式的应用,同角三角函数的基本关系,注意角的变换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网